Adopel: adaptive Data Collection Protocol using Reinforcement Learning for VANETs

نویسندگان

  • Ahmed Soua
  • Hossam Afifi
چکیده

Efficient propagation of information over a vehicular wireless network has usually remained the focus of the research community. Although, scanty contributions have been made in the field of vehicular data collection and more especially in applying learning techniques to such a very changing networking scheme. These smart learning approaches excel in making the collecting operation more reactive to nodes mobility and topology changes compared to traditional techniques where a simple adaptation of Manet’s propositions was carried out. To grasp the efficiency opportunities offered by these learning techniques, an adaptive data collection Protocol using reinforcement Learning (ADOPEL) is proposed for VANETs. The proposal is based on a distributed learning algorithm on which a reward function is defined. This latter takes into account the delay and the number of aggregately packets. The Q-learning technique offers to vehicles the opportunity to optimize their interactions with the very dynamic environment through their experience in the network. Compared to non-learning schemes, our proposal confirms its efficiency and achieves a good tradeoff between delay and collection ratio.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An Adaptive Learning Game for Autistic Children using Reinforcement Learning and Fuzzy Logic

This paper, presents an adapted serious game for rating social ability in children with autism spectrum disorder (ASD). The required measurements are obtained by challenges of the proposed serious game. The proposed serious game uses reinforcement learning concepts for being adaptive. It is based on fuzzy logic to evaluate the social ability level of the children with ASD. The game adapts itsel...

متن کامل

Distributed Reinforcement Learning Approach for Vehicular Ad Hoc Networks

In Vehicular Ad hoc Networks (VANETs), general purpose ad hoc routing protocols such as AODV cannot work efficiently due to the frequent changes in network topology caused by vehicle movement. This paper proposes a VANET routing protocol QLAODV (QLearning AODV) which suits unicast applications in high mobility scenarios. QLAODV is a distributed reinforcement learning routing protocol, which use...

متن کامل

Mini/Micro-Grid Adaptive Voltage and Frequency Stability Enhancement Using Q-learning Mechanism

This paper develops an adaptive control method for controlling frequency and voltage of an islanded mini/micro grid (M/µG) using reinforcement learning method. Reinforcement learning (RL) is one of the branches of the machine learning, which is the main solution method of Markov decision process (MDPs). Among the several solution methods of RL, the Q-learning method is used for solving RL in th...

متن کامل

Reinforcement Learning Based PID Control of Wind Energy Conversion Systems

In this paper an adaptive PID controller for Wind Energy Conversion Systems (WECS) has been developed. Theadaptation technique applied to this controller is based on Reinforcement Learning (RL) theory. Nonlinearcharacteristics of wind variations as plant input, wind turbine structure and generator operational behaviordemand for high quality adaptive controller to ensure both robust stability an...

متن کامل

Reinforcement Learning in Neural Networks: A Survey

In recent years, researches on reinforcement learning (RL) have focused on bridging the gap between adaptive optimal control and bio-inspired learning techniques. Neural network reinforcement learning (NNRL) is among the most popular algorithms in the RL framework. The advantage of using neural networks enables the RL to search for optimal policies more efficiently in several real-life applicat...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • JCS

دوره 10  شماره 

صفحات  -

تاریخ انتشار 2014